OM SLAGGER OG HAMMERSKÆL
Undersøgelserne vedrørende jern Teknologi er baseret på et relativt lille materiale. På lokaliteterne Brandrud I, Brandrud IV og Grytting II blev der således fundet anlæg, som tolkedes som esser eller i det mindste indeholdende affald fra jernfor arbejdning i form af små slaggefragmenter.

Ved smedning kan der opstå flere forskellige former for affald. Udseendet og den kemiske sammensætning af dette affald kan fortælle om de teknikker, som blev anvendt i et smedeværksted (Jouttijärvi 2013).

Slagge er en kemisk forbindelse primært bestående af siliciumoxid og jernoxid i et forhold, der svarer til ca. 70 % jernoxid (FeO) og 30 % siliciumoxid (SiO2). Grunden til, at slaggen har denne sammensætning, er, at det er her, den har det laveste smeltepunkt, som er mellem 1.180 og 1.200 grader. Jernoxid og siliciumoxid danner i dette forhold en kemisk forbindelse, som kaldes fayalit. Siliciumoxid vil oftest komme fra sand eller små stykker flint i malmen.

Når jernet er blevet udvundet, indeholder det stadig meget slagge og kan ikke umiddelbart smedes, uden at man risikerer, at det revner. For at gøre det brugbart til smedning af genstande blev denne slagge fjernet ved den proces, som man kalder primær-smedning. Denne indledende smedeproces foregik i en smedeesse, som var gjort dybere for at kunne rumme slaggene, eller i en lille ovn. Den slagg, som dannedes ved primær-smedning, bestod hovedsagligt af udvindingsslagge, som var smeltet ud af jernet. Under processen skulle der dog ske en kraftig opvarmning til mere end 1.200 grader, og der blev derfor brugt meget trækul. Asken fra trækullaget blandede sig i bunden af essen med den smelte slagge og gav den et højere indhold af kalciumoxid (CaO) og kalkiumoxid (K2O), som asken primært består af. Det er derfor muligt at se forskel på slagger fra udvinding og fra primær-smedning.

Ved opvarmningen af jernet vil smeltet slagge dække overfladen i et tyndt lag, som stærker, når jernet tages ud af ilden. Når jernet derefter hamres på ambolten, dnækkner slaggelaget af som små, relativt tykke og ujævne flager med en sammensætning, som ligner udvindingsslaggen. Hvis slaggien stadig er flyvende, når der hamres på jernet, vil små dråber blive slynget ud i værkstedet og større flager

Når jernet var blevet renset ved primær-smedningen, skulle det smedes til genstande som redskaber, beslag eller våben (sekundær smedning). Ved denne smedning dannes der ikke meget egentlig slagge, men en blanding af smeltet ler fra essen, glødeskal fra jernet og eventuelt sand, som er drysset på under essesvejsning. Slagger fra sekundær smedning vil derfor være mere inhomogene end primær-smedeslagger og have en sammensætning, som ligner smeltet ler, med et højere indhold af jernoxid (FeO).

smedes sammen. Under opvarmningen dannes gløde-
skal, som fjernes, ved at smeden drysser fint sand på
metallet. Glødeskallen og sandet går i forbindelse med
hinanden og danner en flydende slagge, som ved smed-
ningen vil danne små dråber, der størker som kugler
i luften. Slagge, som stærkner på jernets overflade, vil
danne uregelmæssige, tykke skæl. Sporene efter svejs-
ning vil derfor ligne sporene efter primær-smedning.
Der er dog en væsentlig forskel, idet skæl og kugler fra
essesvejsning vil være dannet af rent jernoxid (FeO)
oget rent sand (SiO₂) og dermed vil være fri for de
forureninger fra kalk og lermineraler, som ses i skæl
og kugler fra primær-smedning.

DE TRE ANLÆG
Den væsentligste vejledning, med hensyn til hvilke
processer der er foregået i de enkelte esser, er den
kemiske sammensætning af hammerskæl og slagge-
kugler. Til trods for at der kun fandtes soldede jord-
prøver fra én af pladserne (Grytting II), som indeholdt
hammerskæl, kunne der fra jord på overfladen af vas-
kede og uvaskede slagger fra de øvrige pladser findes
tilstrækkeligt materiale til en analyse. En systematisk
prøvetagning i form af jordprøver fra anlæggen og
området omkring esserne ville have kunnet give et mere
sikkert og nuanceret billede af jernforarbejdningen
(Villumsen, artikel 23 i dette bind).

Brandrud I
Der fandtes ingen jordprøver eller andre prøver af
hammerskæl fra denne lokalitet. Dog fandtes der i
en smule jord, som stadig hæftede ved de ellers vas-
kede slagge i en af prøverne (F9), et mindre antal
hammerskæl. Materialet består primært af et antal
ganske små slaggefragmente, og det må antages at
udgøre en meget lille del af den slaggemængde, som
oprindeligt har været til stede.

Hammerkøl og slaggekugler
I alt 13 hammerskæl blev udtaget og analyseret (figur
21.4).
Af de 13 hammerskæl har de 10 (77 %) en sam-
mensætning, som viser, at de er opstået ved rensning
af luppejern (figur 21.1). Ét skæl har så højt et indhold
af jernoxid, at det er sandsynligt, at det stammer fra
sekundær smedning (formning) af jern. De to sidste
hammerskæl består tilsyneladende af smeltet ler med
et relativt høj indhold af sand.

Hammerkællene, som stammer fra rensning af lup-
pejern (primær-smedning), kan inddeles i to grupper
på hver fem skæl (figur 21.2 og 21.3). Inden for hver
af grupperne har hammerskællene næsten identisk
sammensætning. Dette tyder på, at hammerskællerne
i prøven stammer fra rensning af to forskellige lupper,
som dog godt kan være udvundet samme sted, blot af
to forskellige portioner malm.

Slagger
Der blev foretaget analyser af i alt syv slagger fra de
tre prøver. Af hver slagger blev der foretaget to analyser
forskellige steder. Alle enkeltanalyser er vist i figur 21.5.
Figur 21.4. Tabel 1. Analyser af hammerskål fra Brandrud I.

<table>
<thead>
<tr>
<th>Brandrud 1</th>
<th>Na₂O</th>
<th>MgO</th>
<th>Al₃O₃</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>TiO₂</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C58049/5 F1 A</td>
<td>s₁₁</td>
<td>1,8</td>
<td>0,7</td>
<td>2,7</td>
<td>17,4</td>
<td>0,7</td>
<td>0,3</td>
<td>0,9</td>
<td>0,1</td>
<td>0,5</td>
<td>74,2</td>
</tr>
<tr>
<td>s₂₁</td>
<td>2,3</td>
<td>0,7</td>
<td>7,1</td>
<td>29,4</td>
<td>0,6</td>
<td>1,7</td>
<td>1,8</td>
<td>0,3</td>
<td>0,8</td>
<td>54,8</td>
<td></td>
</tr>
<tr>
<td>s₂₂</td>
<td>2,9</td>
<td>1,6</td>
<td>9,4</td>
<td>31,3</td>
<td>0,3</td>
<td>1,6</td>
<td>2,1</td>
<td>0,4</td>
<td>0,5</td>
<td>50,2</td>
<td></td>
</tr>
<tr>
<td>C58049/6 F10 A</td>
<td>s₁₁</td>
<td>1,8</td>
<td>1,5</td>
<td>5,3</td>
<td>18,8</td>
<td>0,3</td>
<td>1,1</td>
<td>2,7</td>
<td>0,3</td>
<td>0,6</td>
<td>67,9</td>
</tr>
<tr>
<td>s₂₁</td>
<td>1,6</td>
<td>0,9</td>
<td>5,1</td>
<td>22,8</td>
<td>0,3</td>
<td>1,1</td>
<td>1,6</td>
<td>0,1</td>
<td>0,3</td>
<td>66,1</td>
<td></td>
</tr>
<tr>
<td>s₂₂</td>
<td>1,5</td>
<td>1,0</td>
<td>5,4</td>
<td>22,8</td>
<td>0,2</td>
<td>1,0</td>
<td>1,7</td>
<td>0,1</td>
<td>0,3</td>
<td>66,0</td>
<td></td>
</tr>
<tr>
<td>C58049/6 F10 C</td>
<td>s₁₁</td>
<td>1,9</td>
<td>1,0</td>
<td>5,2</td>
<td>20,6</td>
<td>0,7</td>
<td>0,8</td>
<td>2,4</td>
<td>0,0</td>
<td>1,7</td>
<td>65,1</td>
</tr>
<tr>
<td>s₂₁</td>
<td>2,2</td>
<td>0,6</td>
<td>7,0</td>
<td>28,0</td>
<td>0,7</td>
<td>1,4</td>
<td>1,9</td>
<td>0,2</td>
<td>0,8</td>
<td>56,8</td>
<td></td>
</tr>
<tr>
<td>C58049/7 F9 A</td>
<td>s₁₁</td>
<td>2,3</td>
<td>0,8</td>
<td>7,4</td>
<td>28,7</td>
<td>1,0</td>
<td>1,5</td>
<td>1,8</td>
<td>0,3</td>
<td>0,7</td>
<td>55,1</td>
</tr>
<tr>
<td>s₂₁</td>
<td>2,0</td>
<td>0,7</td>
<td>6,8</td>
<td>28,9</td>
<td>0,9</td>
<td>1,5</td>
<td>1,9</td>
<td>0,2</td>
<td>0,8</td>
<td>56,0</td>
<td></td>
</tr>
<tr>
<td>C58049/7 F9 B</td>
<td>s₁₁</td>
<td>2,5</td>
<td>0,9</td>
<td>7,3</td>
<td>30,4</td>
<td>1,0</td>
<td>1,6</td>
<td>2,0</td>
<td>0,2</td>
<td>0,8</td>
<td>53,0</td>
</tr>
<tr>
<td>s₂₁</td>
<td>2,0</td>
<td>0,9</td>
<td>6,2</td>
<td>29,1</td>
<td>0,9</td>
<td>1,4</td>
<td>1,8</td>
<td>0,4</td>
<td>0,9</td>
<td>56,2</td>
<td></td>
</tr>
<tr>
<td>C58049/7 F9 C</td>
<td>s₁₁</td>
<td>1,9</td>
<td>0,6</td>
<td>7,8</td>
<td>29,9</td>
<td>1,0</td>
<td>1,7</td>
<td>2,4</td>
<td>0,1</td>
<td>0,8</td>
<td>53,6</td>
</tr>
<tr>
<td>s₂₁</td>
<td>2,2</td>
<td>0,9</td>
<td>7,3</td>
<td>26,7</td>
<td>1,1</td>
<td>1,6</td>
<td>2,1</td>
<td>0,1</td>
<td>0,9</td>
<td>56,7</td>
<td></td>
</tr>
</tbody>
</table>

Figur 21.5. Tabel 2. Analyser af slagger fra Brandrud I.

Figur 21.6. Jernoxid (FeO) og siliciumoxid (SiO₂) i slagger fra Brandrud I.

Figur 21.7. Sammensætning af slagger fra Brandrud I sammenlignet med hammerskål gruppe 1. Jernoxid (FeO) er ikke medregnet.

Slaggerens sammensætning svarer godt til den, som kendes fra udvindingslagger fra Norge, blot med et generelt forhøjet indhold af kalkoxid (CaO) og kaliumoxid (K₂O); noget, som netop er typisk for slagger opstået ved primær-smedning, da de vil have optaget mere aske end udvindingslaggerne. Ligheden med de norske slagger betyder også, at det er sandsynligt, at det forarbejdede jern kan være resultatet af en lokal produktion.

Jernhåndværket ved Brandrud I

Konklusionen af materialet fra Brandrud I er, at anlægget/essen indeholder spor efter primær-smedning (rensing) af i det mindste to forskellige lupper, som begge kan være resultater af en lokal jernudvinding.

Den ene giver sig til kende i både hammerskæl og slaggekugler, mens den anden kun kan ses i sammensætningen af hammerskællene. Der har tilsyneladende været tale om en form for specialiseret værksted, idet der ikke er fundet tegn på, at jernet er blevet videreforarbejdet på stedet. Der fandtes således kun et enkelt hammerskæl, som kunne antyde, at der også var foregået sekundær smedning (formning af genstande) i essen.

Brandrud IV

Hammerskæl og slaggekugler

Ingen af jordprøverne fra Brandrud IV indeholdt hammerskæl; men fra slaggeprøven F37, som stammer fra esse S29, lykkedes det at finde et antal hammerskæl i den lille mængde vedhængende jord. Der blev foretaget analyser af 13 hammerskæl (figur 21.8).

Sammensætningen af hammerskællene fra Brandrud IV adskiller sig væsentligt fra hammerskællene fra Brandrud I. Af de 13 skæl var der således 9 (69 %), som havde et indhold af jernoxid på over ca. 90 % (figur 21.9). Disse hammerskæl må være opstået ved oxidering af overfladen på slaggefrit jern og må derfor stamme fra sekundær smedning (formning). Til gengæld fandtes der kun tre hammerskæl (23 %), som havde en sammensætning, som pegede på, at der også var blevet foretaget primær-smedning (rensing) af luppejern.

Et enkelt hammerskæl bestående af smeltet ler, kan være en svag antydning af, at der også kan have foregået opkulning af jern til stål.

Slagger

Slaggematerialet fra Brandrud IV var relativt stort, og for at sikre et statistisk tilfredsstillende resultat blev der foretaget analyser af i alt 11 enkelte slagger fra 7 forskellige prøver. Der blev foretaget to - tre analyser pr. slagge, og figur 21.10 angiver alle enkeltanalyser.

Som det kan ses af figur 21.11, er spredningen i slaggernes sammensætning meget større, end det kunne ses i Brandrud I. Fem af slaggerne (55 %) synes således at være fremkommet ved primær-smedning.

Tre slagger (27 %) består af smeltet ler blandet med varierende mængder slagge eller jernoxide og stammer derfor med størst sandsynlighed fra sekundær smedning (formning). Da der ikke er slagge i det forarbejdede jern, er den mængde slagge, som dannes ved sekundær smedning, meget mindre, end det som ses ved primær-smedning. Slaggen kommer primært

<table>
<thead>
<tr>
<th>Brandrud IV</th>
<th>Na₂O</th>
<th>MgO</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>TiO₂</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk1</td>
<td>0,4</td>
<td>0,2</td>
<td>0,7</td>
<td>1,6</td>
<td>0,2</td>
<td>0,1</td>
<td>0,2</td>
<td>0,0</td>
<td>0,7</td>
<td>95,0</td>
<td>0,3</td>
</tr>
<tr>
<td>sk2</td>
<td>0,4</td>
<td>0,3</td>
<td>0,9</td>
<td>1,2</td>
<td>0,2</td>
<td>0,1</td>
<td>0,2</td>
<td>0,0</td>
<td>0,9</td>
<td>95,1</td>
<td>0,0</td>
</tr>
<tr>
<td>sk3</td>
<td>0,5</td>
<td>0,3</td>
<td>0,9</td>
<td>2,2</td>
<td>0,1</td>
<td>0,1</td>
<td>0,2</td>
<td>0,0</td>
<td>1,4</td>
<td>94,0</td>
<td>0,0</td>
</tr>
<tr>
<td>sk4</td>
<td>1,1</td>
<td>1,0</td>
<td>5,9</td>
<td>16,5</td>
<td>0,4</td>
<td>1,1</td>
<td>4,2</td>
<td>0,4</td>
<td>5,9</td>
<td>63,1</td>
<td>0,2</td>
</tr>
<tr>
<td>sk5</td>
<td>0,6</td>
<td>0,3</td>
<td>0,4</td>
<td>2,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,3</td>
<td>0,0</td>
<td>0,0</td>
<td>95,9</td>
<td>0,1</td>
</tr>
<tr>
<td>sk6</td>
<td>0,4</td>
<td>0,3</td>
<td>0,3</td>
<td>1,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,2</td>
<td>0,1</td>
<td>0,0</td>
<td>97,8</td>
<td>0,0</td>
</tr>
<tr>
<td>sk7</td>
<td>0,5</td>
<td>0,7</td>
<td>1,7</td>
<td>11,6</td>
<td>0,2</td>
<td>0,0</td>
<td>2,9</td>
<td>0,2</td>
<td>5,2</td>
<td>76,3</td>
<td>0,1</td>
</tr>
<tr>
<td>sk8</td>
<td>0,7</td>
<td>0,2</td>
<td>1,1</td>
<td>1,6</td>
<td>0,0</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,6</td>
<td>94,5</td>
<td>0,0</td>
</tr>
<tr>
<td>sk9</td>
<td>0,5</td>
<td>0,4</td>
<td>1,4</td>
<td>3,4</td>
<td>0,1</td>
<td>0,1</td>
<td>0,6</td>
<td>0,2</td>
<td>3,5</td>
<td>89,4</td>
<td>0,2</td>
</tr>
<tr>
<td>sk10</td>
<td>0,4</td>
<td>0,2</td>
<td>0,8</td>
<td>3,7</td>
<td>0,2</td>
<td>0,1</td>
<td>0,2</td>
<td>0,1</td>
<td>3,9</td>
<td>90,3</td>
<td>0,0</td>
</tr>
<tr>
<td>sk11</td>
<td>0,7</td>
<td>0,5</td>
<td>2,5</td>
<td>9,5</td>
<td>0,2</td>
<td>0,3</td>
<td>0,9</td>
<td>0,1</td>
<td>4,9</td>
<td>80,1</td>
<td>0,0</td>
</tr>
<tr>
<td>sk12</td>
<td>0,6</td>
<td>0,2</td>
<td>0,9</td>
<td>2,1</td>
<td>0,1</td>
<td>0,0</td>
<td>0,4</td>
<td>0,0</td>
<td>1,1</td>
<td>94,1</td>
<td>0,0</td>
</tr>
<tr>
<td>sk13</td>
<td>3,3</td>
<td>1,5</td>
<td>7,1</td>
<td>50,2</td>
<td>0,4</td>
<td>5,8</td>
<td>3,8</td>
<td>0,7</td>
<td>1,3</td>
<td>26,1</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Figur 21.8. Tabel 3. Analyser af hammerskæl fra Brandrud IV.
Figur 21.9. Jernoxid (FeO) og siliciumoxid (SiO2) i hammer-skal fra Brandrud IV.

Figur 21.11. Jernoxid (FeO) og siliciumoxid (SiO2) i slagverk fra Brandrud IV.

til at bestå af ler, som er smeltet af esestenen, blandet med oxider fra asken af brændslet samt jernoxid fra hammerskæl, som er faldet ned i essen. En meget lille mængde egentlig jernslagge kan komme til, hvis man smeder jern, som stadig har et relativt højt indhold af slaggeindslutninger.

En væsentlig ting er, at der også findes to slagger (18%), som, i det mindste delvist, består af en meget ren blanding af jernoxid (FeO) og siliciumoxid (SiO2). Sådanne slagger kan være et resultat af svejsning og er dannet ved, at smeden, når han skal sammenføje to stykker jern, smider fint sand på jernets overflade. Det sker for at fjerne det lag jernoxid (glødeskal), som dannes ved opvarmningen af jernet i essen. Hvis det ikke bliver fjernet, vil det forhindre jernstykkerne i at hænge sammen, og svejsningen vil mislykkes. Når sandet rammer jernets overflade, danner det, sammen med jernoxid, en slagge, som smelter og bliver presset ud af mellemrummet mellem jernstykkerne, når de hamres på ambolten.
To af de undersøgte slaggestykker indeholdt metal-
lisk jern. I begge tilfælde er der tale om slagge, som
stammer fra primær-smedning.

S29 F9: Jernet er uregelmæssigt, porøst og slag-
gefyldt (figur 21.12). Det bærer intet præg af at være
deformeret ved smedning. Der er sandsynligvis tale
om et lille stykke luppe, som er brækket af under
rensningen. Jernet indeholder ikke kulstof.

S92 F16: I dette stykke er der tale om runde drå-
ber af støbejern (nederst til venstre på figur 21.13).
Støbejern findes yderst sjældent i jernalderen og blev
ikke fremstillet bevidst før omkring år 1300. Det er
sprødt og lader sig ikke smede, hvorfor det var uan-
vendeligt for jernalderens smede. Dråber af støbejern
kunne dog dannes i udvindingsovnene, når klumper af
malm passerede de varmeste områder i forbrændings-
zonen. I de fleste tilfælde blev dråberne sandsynligvis
opfanget af den dannede luppe, og kulstoffet fordeltes
i denne. Når kulstoffet fordeltes i denne, da går der
auddødelige reaktioner i udvindingsovnene. Det vil
sige, at kulstoffet er dannet af en eller anden
reagens, som ikke er kendt. Således er det sandsynligt
, at der er tale om et lille stykke luppe, som er
brækket af underrensningen.

De seks slagger, som stammer fra primær-smed-
ning, er ret forskellige i sammensætning, specielt når
det gælder deres indhold af calciumoxid (CaO) og
manganoxid (MnO) (figur 21.14). Det må betyde, at
der er tale om rensning af flere lopper eller fragmenter af lupper.

Jernstykker

S40 F38 A: Stykket består af massivt stål (figur 21.15)
med et kulstofindhold på ca. 0,8 %. Der fandtes ingen
synlige svejsninger. Det er ikke muligt at sige, hvorvidt
der er tale om et stykke opkullt jern, eller om stålet
kunne dog dannes i udvindingsovnene, når klumper af
malm passerede de varmeste områder i forbrændings-
zonen. I de fleste tilfælde blev dråberne sandsynligvis
opfanget af den dannede luppe, og kulstoffet fordelt
i denne. Der kendes således eksempler på, at der i
luppefragmenter er fundet små områder med meget
øjeblikkelig korrosion.

S40 F39 B: Også i dette tilfælde er der tale om et
stykke stål (figur 21.16). I dette tilfælde kan der dog
se en tydelig stigning i kulstofindholdet fra ca. 0,8 %
in centrum til ca. 1,2 % ved overfladen. Det peger på,
at stålet er fremstillet ved opkulning.

Heller ikke i dette stykke fandtes synlige svejsninger.

S35 F11: Jernstykket er meget kraftigt korroderet,
det kan dog skyldes

er tale om et kompakt
slagge, som tilsyneladende er dannet i bunden af en
esse. Det er svært at finde dråber af
støbejern i en esseslagge, og det er ikke umiddelbart
muligt at afgøre, hvordan støbejernet er dannet. Der
can muligvis være tale om dråber, som allerede har
været til stede i slaggen omkring et luppefragment,
som er blevet renset.

S35 F11: Jernstykket er meget korroderet, og det kan dog
skyldes
den kraftige korrosion.
S92 F12: Også her er der tale om et meget kraftigt korroderet stykke jern. Kun meget små, uregelmæssige områder med metal er bevaret (figur 21.18).

Der er tale om stål med et kulstofindhold på 0,6 til 0,7 %. På grund af den kraftige korrosion er det ikke muligt at afgøre, om stålet er fremstillet ved opkulning.

Jernhåndværket ved Brandrud IV
Det samlede indtryk, på grundlag af analyserne af hammerskæl og slagger, er, at smedjen i Brandrud IV kun i mindre omfang har været anvendt til rensning af luppejern. Den væsentligste type arbejde synes således at have været sekundær smedning (formning) af genstande. Det ser endda ud til, at smeden har behersket mere avancerede teknikker som svejsning og måske opkulning og dermed har været i stand til at fremstille redskaber eller våben af høj kvalitet.

Fordelingen af kulstoff i S4 F39 B viser endvidere, at i det mindste en del af det stål, som blev anvendt, blev fremstillet ved opkulning af jern. Opkulningen er sandsynligvis sket, omtrent som det beskrives af Theophilus i det 11. århundrede. Han beskriver fremstillingen af file således:

Figur 21.15. S40 F38 A. Sort = korrosion, gråt = stål med ca. 0,8 % C.
Figur 21.16. S40 F39 B. Sort = korrosion, lyst gråt = stål med ca. 0,8 % C, mørkt gråt = ca. 1,2 % C.
Figur 21.18. S92 F12. Sort = korrosion, lyst gråt = stål med ca. 0,6–0,7 % C.
Rester af den lerkappe, som har været pakket omkring jernet under processen, er fundet i flere smedjer. I disse værksteder er der desuden fundet relativt store mængder af ’slaggekugler’, som ved analyse har vist sig at være støkknede dråber af smeltet ler. Sandsynligvis er de opstået, når den delvist smeltede lerkappe blev fjernet fra jernet. Fragmente af lerkappe eller lerkugler er dog ikke identificeret i materialet fra Brandrud IV.

Grytting II

Hammerskæl og slaggekugler

To prøver fra Grytting II indeholdt hammerskæl og slaggekugler (F30 og F31). Prøverne stammer begge fra anlæg S18.

Som det kan ses af figur 21.21, opdeles skæl og kugler i tre veldefinerede grupper. Næsten alle hammerskæl har et indhold af jernoxid over ca. 90 %, hvilket viser, at de stammer fra sekundær smedning (formning) af jern. Ét hammerskæl synes at bestå af smeltet ler.

Fem af slaggekuglerne har en sammensætning, som viser, at de er dannet ved primær-smedning, mens de sidste tre er dråber af smeltet ler. De sidste kan pege på, at der også kan være foregået opkulning i smedjen.

Igen er der tale om hammerskæl og slaggekugler fra såvel primær som sekundær smedning (figur 21.24), og tre skæl af ler tyder på opkulning.

![Figur 21.21. Jernoxid (FeO) og siliciumoxid (SiO2) i hammerskæl (trekanter) og slaggekugler (cirkler) fra Grytting II, F30.](image)

<table>
<thead>
<tr>
<th>S18 F30 skæl</th>
<th>Na2O</th>
<th>MgO</th>
<th>Al2O3</th>
<th>SiO2</th>
<th>P2O5</th>
<th>K2O</th>
<th>CaO</th>
<th>TiO2</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk1</td>
<td>1,1</td>
<td>0,4</td>
<td>0,4</td>
<td>1,5</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,1</td>
<td>96,0</td>
<td>0,1</td>
</tr>
<tr>
<td>sk2</td>
<td>0,9</td>
<td>0,3</td>
<td>0,1</td>
<td>0,9</td>
<td>0,3</td>
<td>0,0</td>
<td>0,1</td>
<td>0,2</td>
<td>0,0</td>
<td>97,9</td>
<td>0,0</td>
</tr>
<tr>
<td>sk3</td>
<td>0,8</td>
<td>0,6</td>
<td>0,2</td>
<td>1,0</td>
<td>0,4</td>
<td>0,0</td>
<td>0,1</td>
<td>0,1</td>
<td>0,0</td>
<td>96,2</td>
<td>0,3</td>
</tr>
<tr>
<td>sk4</td>
<td>1,4</td>
<td>1,0</td>
<td>0,6</td>
<td>3,9</td>
<td>0,1</td>
<td>0,0</td>
<td>0,2</td>
<td>0,0</td>
<td>0,0</td>
<td>92,8</td>
<td>0,0</td>
</tr>
<tr>
<td>sk5</td>
<td>0,9</td>
<td>0,1</td>
<td>0,2</td>
<td>1,9</td>
<td>0,2</td>
<td>0,0</td>
<td>0,2</td>
<td>0,0</td>
<td>0,0</td>
<td>96,2</td>
<td>0,4</td>
</tr>
<tr>
<td>sk6</td>
<td>1,3</td>
<td>0,7</td>
<td>0,1</td>
<td>1,7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,2</td>
<td>95,4</td>
<td>0,1</td>
</tr>
<tr>
<td>sk7</td>
<td>1,2</td>
<td>2,7</td>
<td>24,3</td>
<td>44,6</td>
<td>0,1</td>
<td>7,7</td>
<td>0,5</td>
<td>1,2</td>
<td>0,3</td>
<td>17,6</td>
<td>0,0</td>
</tr>
<tr>
<td>sk8</td>
<td>1,0</td>
<td>0,5</td>
<td>1,1</td>
<td>3,7</td>
<td>0,3</td>
<td>0,3</td>
<td>0,1</td>
<td>0,1</td>
<td>0,3</td>
<td>92,5</td>
<td>0,0</td>
</tr>
<tr>
<td>sk9</td>
<td>1,1</td>
<td>0,8</td>
<td>1,2</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>97,1</td>
<td>0,0</td>
</tr>
<tr>
<td>sk10</td>
<td>1,2</td>
<td>0,8</td>
<td>1,3</td>
<td>1,8</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,3</td>
<td>95,9</td>
<td>0,0</td>
</tr>
<tr>
<td>sk11</td>
<td>0,8</td>
<td>1,0</td>
<td>2,5</td>
<td>13,5</td>
<td>1,0</td>
<td>0,6</td>
<td>1,9</td>
<td>0,1</td>
<td>0,0</td>
<td>75,8</td>
<td>0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S18 F30 kugler</th>
<th>Na2O</th>
<th>MgO</th>
<th>Al2O3</th>
<th>SiO2</th>
<th>P2O5</th>
<th>K2O</th>
<th>CaO</th>
<th>TiO2</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ku1</td>
<td>0,8</td>
<td>1,0</td>
<td>3,0</td>
<td>16,6</td>
<td>1,1</td>
<td>0,3</td>
<td>2,3</td>
<td>0,1</td>
<td>3,8</td>
<td>71,2</td>
<td>0,0</td>
</tr>
<tr>
<td>ku2</td>
<td>0,9</td>
<td>0,9</td>
<td>2,3</td>
<td>15,8</td>
<td>0,5</td>
<td>0,4</td>
<td>2,0</td>
<td>0,0</td>
<td>3,3</td>
<td>73,6</td>
<td>0,2</td>
</tr>
<tr>
<td>ku3</td>
<td>1,6</td>
<td>0,8</td>
<td>2,7</td>
<td>9,5</td>
<td>7,6</td>
<td>0,2</td>
<td>1,0</td>
<td>0,3</td>
<td>1,2</td>
<td>75,2</td>
<td>0,0</td>
</tr>
<tr>
<td>ku4</td>
<td>3,9</td>
<td>3,4</td>
<td>16,9</td>
<td>56,7</td>
<td>0,0</td>
<td>6,0</td>
<td>5,6</td>
<td>1,5</td>
<td>1,1</td>
<td>53,0</td>
<td>0,0</td>
</tr>
<tr>
<td>ku5</td>
<td>0,8</td>
<td>1,0</td>
<td>2,1</td>
<td>15,7</td>
<td>0,7</td>
<td>0,6</td>
<td>2,4</td>
<td>0,1</td>
<td>3,2</td>
<td>72,9</td>
<td>0,3</td>
</tr>
<tr>
<td>ku6</td>
<td>2,2</td>
<td>1,8</td>
<td>5,5</td>
<td>75,1</td>
<td>0,2</td>
<td>2,3</td>
<td>4,5</td>
<td>0,5</td>
<td>0,8</td>
<td>7,0</td>
<td>0,0</td>
</tr>
<tr>
<td>ku7</td>
<td>3,7</td>
<td>1,7</td>
<td>9,2</td>
<td>72,5</td>
<td>0,3</td>
<td>2,3</td>
<td>3,7</td>
<td>0,3</td>
<td>0,9</td>
<td>5,5</td>
<td>0,2</td>
</tr>
<tr>
<td>ku8</td>
<td>0,9</td>
<td>1,0</td>
<td>2,5</td>
<td>13,5</td>
<td>1,0</td>
<td>0,6</td>
<td>1,9</td>
<td>0,1</td>
<td>2,3</td>
<td>75,8</td>
<td>0,1</td>
</tr>
</tbody>
</table>

![Figur 21.20. Tabel 6. Analyser af slaggekugler fra Grytting II, F30.](image)
Esser og spor efter smedning

<table>
<thead>
<tr>
<th>S18 F31 skæl</th>
<th>Na₂O</th>
<th>MgO</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>TiO₂</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk1</td>
<td>1,3</td>
<td>0,4</td>
<td>0,4</td>
<td>1,0</td>
<td>0,0</td>
<td>0,1</td>
<td>0,2</td>
<td>0,0</td>
<td>0,5</td>
<td>96,1</td>
<td>0,2</td>
</tr>
<tr>
<td>sk2</td>
<td>1,0</td>
<td>0,6</td>
<td>0,6</td>
<td>1,9</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,0</td>
<td>0,1</td>
<td>94,9</td>
<td>0,0</td>
</tr>
<tr>
<td>sk3</td>
<td>8,0</td>
<td>1,6</td>
<td>19,5</td>
<td>58,3</td>
<td>0,1</td>
<td>2,9</td>
<td>0,4</td>
<td>1,0</td>
<td>0,3</td>
<td>7,7</td>
<td>0,0</td>
</tr>
<tr>
<td>sk4</td>
<td>1,7</td>
<td>0,9</td>
<td>1,7</td>
<td>6,2</td>
<td>0,2</td>
<td>0,1</td>
<td>1,9</td>
<td>0,1</td>
<td>0,4</td>
<td>85,1</td>
<td>0,0</td>
</tr>
<tr>
<td>sk5</td>
<td>0,9</td>
<td>0,5</td>
<td>1,1</td>
<td>2,6</td>
<td>0,1</td>
<td>0,2</td>
<td>0,2</td>
<td>0,1</td>
<td>0,1</td>
<td>94,1</td>
<td>0,0</td>
</tr>
<tr>
<td>sk6</td>
<td>1,3</td>
<td>2,7</td>
<td>25,3</td>
<td>46,4</td>
<td>0,3</td>
<td>8,3</td>
<td>0,7</td>
<td>1,1</td>
<td>0,1</td>
<td>12,8</td>
<td>0,1</td>
</tr>
<tr>
<td>sk7</td>
<td>1,1</td>
<td>1,2</td>
<td>2,7</td>
<td>15,4</td>
<td>0,8</td>
<td>0,7</td>
<td>3,1</td>
<td>0,1</td>
<td>3,6</td>
<td>70,5</td>
<td>0,0</td>
</tr>
<tr>
<td>sk8</td>
<td>1,4</td>
<td>0,7</td>
<td>3,6</td>
<td>9,5</td>
<td>2,2</td>
<td>0,0</td>
<td>2,7</td>
<td>0,1</td>
<td>1,2</td>
<td>76,3</td>
<td>0,0</td>
</tr>
<tr>
<td>sk9</td>
<td>1,5</td>
<td>0,2</td>
<td>0,8</td>
<td>6,8</td>
<td>0,0</td>
<td>0,1</td>
<td>0,9</td>
<td>0,0</td>
<td>1,6</td>
<td>87,2</td>
<td>0,1</td>
</tr>
<tr>
<td>sk10</td>
<td>4,6</td>
<td>1,6</td>
<td>21,6</td>
<td>51,7</td>
<td>0,6</td>
<td>4,7</td>
<td>0,8</td>
<td>1,1</td>
<td>0,7</td>
<td>12,7</td>
<td>0,0</td>
</tr>
<tr>
<td>sk11</td>
<td>2,8</td>
<td>1,7</td>
<td>8,7</td>
<td>28,0</td>
<td>0,7</td>
<td>1,1</td>
<td>3,2</td>
<td>0,7</td>
<td>0,8</td>
<td>51,7</td>
<td>0,0</td>
</tr>
<tr>
<td>sk12</td>
<td>0,7</td>
<td>0,4</td>
<td>0,7</td>
<td>2,7</td>
<td>0,1</td>
<td>0,0</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>95,0</td>
<td>0,0</td>
</tr>
<tr>
<td>sk13</td>
<td>0,8</td>
<td>0,9</td>
<td>1,9</td>
<td>12,0</td>
<td>0,4</td>
<td>0,2</td>
<td>1,2</td>
<td>0,1</td>
<td>1,5</td>
<td>80,8</td>
<td>0,0</td>
</tr>
<tr>
<td>sk14</td>
<td>1,4</td>
<td>0,7</td>
<td>2,0</td>
<td>7,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,5</td>
<td>0,1</td>
<td>0,1</td>
<td>87,0</td>
<td>0,0</td>
</tr>
<tr>
<td>sk15</td>
<td>1,3</td>
<td>1,2</td>
<td>4,1</td>
<td>23,6</td>
<td>1,5</td>
<td>0,8</td>
<td>5,3</td>
<td>0,2</td>
<td>2,3</td>
<td>58,5</td>
<td>0,1</td>
</tr>
<tr>
<td>sk16</td>
<td>1,0</td>
<td>0,5</td>
<td>0,6</td>
<td>2,8</td>
<td>0,7</td>
<td>0,2</td>
<td>0,2</td>
<td>0,0</td>
<td>0,2</td>
<td>93,7</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S18 F31 kugler</th>
<th>Na₂O</th>
<th>MgO</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>TiO₂</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ku 1</td>
<td>1,1</td>
<td>0,9</td>
<td>2,3</td>
<td>17,1</td>
<td>0,8</td>
<td>0,5</td>
<td>2,0</td>
<td>0,1</td>
<td>3,1</td>
<td>71,3</td>
<td>0,2</td>
</tr>
<tr>
<td>ku 2</td>
<td>0,9</td>
<td>0,6</td>
<td>0,5</td>
<td>3,9</td>
<td>0,7</td>
<td>0,1</td>
<td>0,6</td>
<td>0,0</td>
<td>0,4</td>
<td>91,4</td>
<td>0,2</td>
</tr>
<tr>
<td>ku 3</td>
<td>0,8</td>
<td>1,0</td>
<td>2,2</td>
<td>14,8</td>
<td>0,6</td>
<td>0,4</td>
<td>2,3</td>
<td>0,0</td>
<td>3,5</td>
<td>73,9</td>
<td>0,3</td>
</tr>
<tr>
<td>ku 4</td>
<td>1,0</td>
<td>1,1</td>
<td>2,3</td>
<td>16,2</td>
<td>0,6</td>
<td>0,6</td>
<td>2,2</td>
<td>0,1</td>
<td>3,7</td>
<td>72,2</td>
<td>0,1</td>
</tr>
<tr>
<td>ku 5</td>
<td>1,1</td>
<td>1,4</td>
<td>3,1</td>
<td>22,3</td>
<td>1,4</td>
<td>1,2</td>
<td>3,5</td>
<td>0,1</td>
<td>4,4</td>
<td>61,2</td>
<td>0,2</td>
</tr>
<tr>
<td>ku 6</td>
<td>1,0</td>
<td>0,9</td>
<td>8,0</td>
<td>14,1</td>
<td>0,6</td>
<td>0,5</td>
<td>2,1</td>
<td>0,0</td>
<td>2,9</td>
<td>75,3</td>
<td>0,2</td>
</tr>
<tr>
<td>ku 7</td>
<td>1,1</td>
<td>1,2</td>
<td>2,6</td>
<td>15,5</td>
<td>1,3</td>
<td>0,7</td>
<td>2,7</td>
<td>0,1</td>
<td>2,8</td>
<td>71,5</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Figur 21.24. Jernoxid (FeO) og siliciumoxid (SiO₂) i hammerskæl (trekanter) og slaggekugler (cirkler) fra Grytting II, F31.

<table>
<thead>
<tr>
<th>Grytting II</th>
<th>Na₂O</th>
<th>MgO</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>TiO₂</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S18 F25 A</td>
<td>2,5</td>
<td>1,2</td>
<td>4,5</td>
<td>10,8</td>
<td>3,1</td>
<td>0,3</td>
<td>1,7</td>
<td>0,0</td>
<td>1,8</td>
<td>73,7</td>
<td>0,3</td>
</tr>
<tr>
<td>S18 F25 A</td>
<td>1,8</td>
<td>1,0</td>
<td>3,6</td>
<td>9,0</td>
<td>1,7</td>
<td>0,3</td>
<td>1,4</td>
<td>0,1</td>
<td>1,6</td>
<td>79,0</td>
<td>0,1</td>
</tr>
<tr>
<td>S18 F25 B</td>
<td>0,9</td>
<td>1,9</td>
<td>5,9</td>
<td>23,6</td>
<td>1,5</td>
<td>3,5</td>
<td>5,0</td>
<td>0,1</td>
<td>1,8</td>
<td>55,2</td>
<td>0,2</td>
</tr>
<tr>
<td>S18 F25 B</td>
<td>1,3</td>
<td>2,0</td>
<td>3,5</td>
<td>13,6</td>
<td>1,3</td>
<td>2,0</td>
<td>3,0</td>
<td>0,1</td>
<td>1,9</td>
<td>70,9</td>
<td>0,1</td>
</tr>
<tr>
<td>S18 F31 A</td>
<td>1,1</td>
<td>0,8</td>
<td>3,3</td>
<td>15,3</td>
<td>0,1</td>
<td>0,5</td>
<td>1,5</td>
<td>0,1</td>
<td>0,5</td>
<td>76,6</td>
<td>0,0</td>
</tr>
<tr>
<td>S18 F31 A</td>
<td>0,7</td>
<td>0,9</td>
<td>2,5</td>
<td>11,0</td>
<td>0,2</td>
<td>0,1</td>
<td>1,0</td>
<td>0,0</td>
<td>0,6</td>
<td>82,5</td>
<td>0,2</td>
</tr>
<tr>
<td>S18 F31 B</td>
<td>0,8</td>
<td>0,7</td>
<td>1,8</td>
<td>8,9</td>
<td>0,6</td>
<td>0,3</td>
<td>1,4</td>
<td>0,0</td>
<td>1,3</td>
<td>84,1</td>
<td>0,2</td>
</tr>
<tr>
<td>S18 F31 B</td>
<td>0,9</td>
<td>0,6</td>
<td>1,9</td>
<td>8,7</td>
<td>0,7</td>
<td>0,2</td>
<td>1,2</td>
<td>0,0</td>
<td>1,1</td>
<td>84,7</td>
<td>0,0</td>
</tr>
<tr>
<td>S18 F31 C</td>
<td>0,8</td>
<td>1,9</td>
<td>5,0</td>
<td>18,2</td>
<td>0,4</td>
<td>2,2</td>
<td>3,3</td>
<td>0,2</td>
<td>1,6</td>
<td>66,2</td>
<td>0,0</td>
</tr>
<tr>
<td>S18 F31 C</td>
<td>1,0</td>
<td>1,9</td>
<td>5,9</td>
<td>19,9</td>
<td>0,4</td>
<td>3,2</td>
<td>3,8</td>
<td>0,0</td>
<td>1,5</td>
<td>62,1</td>
<td>0,0</td>
</tr>
<tr>
<td>S100 F100 A</td>
<td>1,6</td>
<td>1,2</td>
<td>3,8</td>
<td>17,9</td>
<td>1,6</td>
<td>1,1</td>
<td>2,4</td>
<td>0,0</td>
<td>2,0</td>
<td>67,8</td>
<td>0,3</td>
</tr>
<tr>
<td>S100 F100 A</td>
<td>1,1</td>
<td>0,9</td>
<td>3,7</td>
<td>16,6</td>
<td>1,4</td>
<td>1,1</td>
<td>2,2</td>
<td>0,1</td>
<td>2,1</td>
<td>70,5</td>
<td>0,2</td>
</tr>
<tr>
<td>S100 F100 B</td>
<td>1,2</td>
<td>0,9</td>
<td>3,1</td>
<td>17,3</td>
<td>1,1</td>
<td>0,7</td>
<td>2,1</td>
<td>0,1</td>
<td>2,9</td>
<td>70,2</td>
<td>0,0</td>
</tr>
<tr>
<td>S100 F100 B</td>
<td>1,2</td>
<td>0,8</td>
<td>2,6</td>
<td>14,7</td>
<td>1,0</td>
<td>0,7</td>
<td>1,8</td>
<td>0,1</td>
<td>2,9</td>
<td>74,0</td>
<td>0,2</td>
</tr>
<tr>
<td>S100 F100 C</td>
<td>1,2</td>
<td>1,3</td>
<td>3,2</td>
<td>13,6</td>
<td>0,8</td>
<td>0,7</td>
<td>2,5</td>
<td>0,1</td>
<td>2,9</td>
<td>73,3</td>
<td>0,0</td>
</tr>
<tr>
<td>S100 F100 C</td>
<td>1,1</td>
<td>1,3</td>
<td>3,6</td>
<td>17,5</td>
<td>1,2</td>
<td>0,6</td>
<td>3,1</td>
<td>0,0</td>
<td>3,1</td>
<td>67,8</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Figur 21.27. Jernoxid (FeO) og siliciumoxid (SiO₂) i slagger fra Grytting II.

Figur 21.28. Fragment af luppe i slagge fra Grytting II.

Figur 21.29. Sammensætning af slagger fra Grytting II.

Figur 21.30. Sammensætning af slagge S100 F100 B sammenlignet med slaggekugler fra Grytting II.
højere end de 800-900 grader, som smeden anvender ved normal (sekundær) smedning.

Majoriteten af hammerskæl og slaggekugler (otte hammerskæl og seks slaggekugler) har deres oprindelse i primær-smedning af luppejern. Den kemiske sammensætning af disse slaggekugler er næsten identisk med de tilsvarende slaggekugler fra F30 (figur 21.25), hvilket viser, at materialet i begge prøver må stamme fra samme proces, altså renseringen af samme jernluppe.

Skællene af smeltet ler tyder, ligesom lerkuglerne fra F30, på, at der også har været opkullet jern i værkstedet.

Slagge

Som det kan ses af figur 21.27, synes alle slaggerne at være opstået ved primær-smedning. En af slaggerne (S18 F31 C) indeholdt da også et stykke uforarbejdet, porøst jern, som sandsynligvis er et fragment af en af de rensede lupper (figur 21.28).

Slagernes sammensætninger er ret kraftigt varierende (figur 21.29), hvilket tyder på, at flere forskellige lupper er blevet renset på stedet. Én af analyserne er næsten identisk med analyserne af slaggekuglerne (figur 21.30), og det er sandsynligt, at der her er tale om spor efter den sidste luppe, som blev renset i essen.

Jerngenstande
S18 F27: Næsten kvadratisk jernemne. Relativt velbevaret. Strukturen viser, at der er tale om et stykke kulstoffrit jern, som er blevet opkullet til en dybde på ca. 2 mm (figur 21.31). Kulstofindholdet i det yderste lag er ca. 0,4 %.

Der er ingen tegn på, at emnet skulle være svejet sammen af flere stykker.

Emnet består af kulstoffrit jern med et relativt højt indhold af slaggeindeslutninger (figur 21.34).

<table>
<thead>
<tr>
<th>F27 S18</th>
<th>Na₂O</th>
<th>MgO</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>TiO₂</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>sl1</td>
<td>0,2</td>
<td>0,2</td>
<td>1,7</td>
<td>9,2</td>
<td>0,6</td>
<td>0,7</td>
<td>1,0</td>
<td>0,1</td>
<td>1,3</td>
<td>84,7</td>
<td>0,1</td>
</tr>
<tr>
<td>sl2</td>
<td>0,2</td>
<td>0,3</td>
<td>1,8</td>
<td>8,6</td>
<td>0,4</td>
<td>0,6</td>
<td>0,8</td>
<td>0,0</td>
<td>0,4</td>
<td>86,7</td>
<td>0,2</td>
</tr>
<tr>
<td>sl3</td>
<td>0,3</td>
<td>0,8</td>
<td>1,7</td>
<td>10,1</td>
<td>0,3</td>
<td>0,5</td>
<td>1,2</td>
<td>0,2</td>
<td>1,6</td>
<td>83,3</td>
<td>0,0</td>
</tr>
<tr>
<td>sl4</td>
<td>0,0</td>
<td>0,1</td>
<td>0,1</td>
<td>15,2</td>
<td>0,1</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>84,2</td>
<td>0,1</td>
</tr>
<tr>
<td>sl5</td>
<td>0,0</td>
<td>0,7</td>
<td>0,4</td>
<td>4,3</td>
<td>3,8</td>
<td>0,0</td>
<td>3,3</td>
<td>0,2</td>
<td>4,4</td>
<td>82,7</td>
<td>0,0</td>
</tr>
<tr>
<td>sl6</td>
<td>0,4</td>
<td>0,6</td>
<td>1,5</td>
<td>9,2</td>
<td>0,5</td>
<td>0,7</td>
<td>1,6</td>
<td>0,2</td>
<td>2,4</td>
<td>83,0</td>
<td>0,2</td>
</tr>
<tr>
<td>sl7</td>
<td>0,3</td>
<td>0,5</td>
<td>1,5</td>
<td>8,7</td>
<td>0,3</td>
<td>0,7</td>
<td>1,1</td>
<td>0,1</td>
<td>1,8</td>
<td>85,0</td>
<td>0,0</td>
</tr>
<tr>
<td>sl8</td>
<td>0,1</td>
<td>0,3</td>
<td>0,7</td>
<td>4,6</td>
<td>0,5</td>
<td>0,3</td>
<td>0,8</td>
<td>0,1</td>
<td>1,4</td>
<td>91,2</td>
<td>0,0</td>
</tr>
<tr>
<td>sl9</td>
<td>0,1</td>
<td>0,0</td>
<td>0,7</td>
<td>3,9</td>
<td>0,1</td>
<td>0,3</td>
<td>0,1</td>
<td>0,1</td>
<td>0,4</td>
<td>94,1</td>
<td>0,0</td>
</tr>
<tr>
<td>sl10</td>
<td>0,1</td>
<td>0,3</td>
<td>1,3</td>
<td>9,0</td>
<td>0,5</td>
<td>0,4</td>
<td>1,7</td>
<td>0,2</td>
<td>3,7</td>
<td>82,6</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Figur 21.31. S18 F27. Sort = korrosion, lyst gråt = stål med ca. 0,4 % C.

Figur 21.32. Tabel 10. Analyser af slaggeindeslutninger i jernemnet S18 F27.

Figur 21.33. Middelsammensætning af slaggeindeslutninger i jernemnet S18 F27 sammenlignet med slaggekugler fra Grytting II.
Jern håndværk ved Grytting II

Det samlede indtryk af jern håndværk i Grytting II er, at der i stedet for at have primær-smedning (rensning) af luppejern, der er dog dog også foregået sekundær smedning, som eventuelt blot kan være en færdigsmedning af det rensede jern til barrer eller andre former for halvfabrikata.

Denne essesse, som ligesom Brandrud IV har også hyppigt åbnet for primær-smedning, vil også her være stærkt generende, hvis der er været en relativt avanceret smedje, hvor smeden har behersket teknikker som sveisning og opkulning, og har kunnet fremstille redskaber eller våben af en høj smedeteknisk kvalitet.

Jern håndværk ved Brandrud IV og Brandrud IV og Grytting II.

Den ordentlige fordeling af hammerskæl dannet ved de forskellige smedproceser i prøverne fra Brandrud I, Brandrud IV og Grytting II.

Figur 21.34. S18 F28. Sort = korrosion, hvidt = jern.

Figur 21.35. Den omtrentlige fordeling af hammerskæl dannet ved de forskellige smedproceser i prøverne fra Brandrud I, Brandrud IV og Grytting II.

Der er ingen tegn på, at emnet er sveiset sammen af flere stykker, eller på, at der er blevet forsøgt en opkulning.

Jern håndværk ved Grytting II

Det samlede indtryk af jern håndværk i Grytting II er, at der i stedet for at have primær-smedning (rensning) af luppejern. Der er dog også foregået sekundær smedning, som eventuelt blot kan være en færdigsmedning af det rensede jern til barrer eller andre former for halvfabrikata.

Figur 21.35. Den omtrentlige fordeling af hammerskæl dannet ved de forskellige smedproceser i prøverne fra Brandrud I, Brandrud IV og Grytting II.

at hammerskæl fra sekundær smedning her er meget dominerende. Denne essesse, som var placeret inde i en bygning, synes dermed primært at have været anvendt ved formning af jerngenstande. Kun i mindre omfang har der også været udført primær-smedning (rensning) af luppejern. Dette bekræftes af, at en væsentlig del af slagterne primært består af smeltet lær blandet med jernoxid, noget, der er typisk for slagter fra sekundær smedning. Til gengæld peger analyserne af såvel slagter som slaggekugler og hammerskæl på, at der også har været foretaget opkulning af jern til stål, og at der er foregået sveisning. Det kan dermed tænkes, at stålet er blevet indsat som skærende ægge i redskaber eller våben. Værkstedet synes dermed at have været en relativt avanceret smedje, hvor smeden har behersket teknikker som sveisning og opkulning, og har kunnet fremstille redskaber eller våben af en høj smedeteknisk kvalitet.

At der i værkstedet har været fremsat eller anvendt stål, kan også ses af, at tre ud af fire jernemner, som blev undersøgt, bestod af stål. Det ene kan endda tydeligt ses at være fremsat ved opkulning af jern. I modsætning til Brandrud IV har jern håndværk på de to andre lokaliteter været mere domineret af primær-smedning. Særlig udtalt er det for Brandrud I, hvor såvel hammerskæl som slagter ikke viser tegn på, at der er sket sveisning, hvor flanken af slagterne primært består af smeltet lær blandet med jernoxid. Dette bekræftes af, at en væsentlig del af slagterne primært består af smeltet lær blandet med jernoxid, noget, der er typisk for slagter fra sekundær smedning.
gulvlaget eller ligger på ubefærdede steder som f.eks. langs væggene (Jouttijärvi 2010). Er gulvlaget ikke bevaret, vil også disse være forsvundet, og man vil kun finde lidt slagge i resterne af essen samt i stolpehuller og andre nedgravninger.

Da der ikke var blevet taget jordprøver fra Brandrud I, stammede de analyserede hammerskæl fra mindre mængder jord, som stadig sad på slaggerne. Det giver naturligvis nogen usikkerhed ved bestemmelserne, da det er muligt, at hammerskællene er deponeret samtidig med slaggerne og dermed afspiller den samme aktivitet som disse. Det kan derfor ikke helt udelukkes, at der på andre tidspunkter kan have foregået andre aktiviteter som f.eks. sekundær smedning i værkstedet, og at spor efter disse havde kunnet findes i jordprøver. Det understreger vigtigheden af, at der altid tages jordprøver fra anlæg, hvori der findes slagge. Analyse udelukkende af slagge vil således kunne give et fortegnet billede af et værksteds funktion, mens de analyserede hammerskæl og slaggekugler som regel vil være deponeret over en længere periode, og derfor giver et mere præcist indtryk af, hvilke processer der har fundet sted.

Da de to smedjer Brandrud I og Brandrud IV tilsyneladende har været anvendt til hver sin del af jernforarbejdningen, er det nærliggende at forestille sig, at de har fungeret samtidig, og at renning og smedning har været foretaget i hvert sit specialiserede værksted. Hvor der er tydelige analytiske grupperinger af slagger og hammerskæl inden for henholdsvis Brandrud I og Brandrud IV (figur 21.36 og 21.37), er der dog intet, som kan knytte de to smedjer sammen. Der er dermed ikke noget i det analyserede materiale, som tyder på, at det jern, som blev renset ved Brandrud I, blev bragt videre til smedjen ved Brandrud IV for videre smedning. Analyserne peger derimod på, at de to værksteder har fungeret uafhængigt af hinanden.

En væsentlig forskel mellem slaggerne fra Brandrud I og Brandrud IV er, at slaggerne fra Brandrud IV generelt har høje indhold af manganoxid (MnO), hvor slaggerne fra Brandrud I har ret lave indhold. Der er sandsynligvis ikke tale om et udtryk for forskelle i udvindingsprocessen, men blot om anvendelsen af to malme med forskellig sammensætning. Det kan f. eks. være resultatet af to sæsoners jernproduktion, baseret på malme taget forskellige steder.

Figur 21.36. Grupper af slagger og hammerskæl fra Brandrud I.

Den manglende sammenhæng mellem Brandrud I og Brandrud IV kan derfor også skyldes, at de ikke har været i brug samtidig, men er resultaterne af jernforarbejdning i forskellige sæsoner, som dog kan ligge inden for nogle få år. Specielt fordi de analyserede slagger stammer fra selve esserne og ikke fra eventuelle affaldsdeponerings omkring værkstederne, er det muligt, at de kun afspejler det sidste arbejde, som foregik i essen. Som før omtalt, bliver slagger i vid udstrækning hurtigt fjernet fra essen, mens hammerskæl har en større chance for at blive liggende i området omkring esse og ambolt gennem flere sæsoner. Også materialet fra essen i Grytting II viser, at der her er foregået en ret omfattende primær-smedning. Der fandtes således kun slagger fra denne proces. Til gengæld har primær-smedningen dog ikke her været så enerådende som i Brandrud I. Analyserne af hammerskæl og slaggekugler viser således, at der også er blevet foretaget sekundær smedning. Svejning findes der dog ingen tegn på. Det er muligt, at det renseade jern er blevet smedet til stænger eller små rektangulære emner, som derefter er blevet opkullet til stål. Af de to emner, som blev undersøgt, er det ene opkullet til ca. 2 mm's dybde i overfladen. At dette emne tilsyneladende er fremstillet af jern, som er blevet renset på stedet, kan ses af, at slaggeindeslutningerne i det har en sammensætning, som er næsten identisk med sammensætningen af slagger og hammerskæl fra primær-smedning.

Til trods for at Grytting II er dateret til middelalder, mens Brandrud I og IV er dateret til romertid/folkevandringstid, er der ikke nogen væsentlig forskel i sammensætningen af slagger eller hammerskæl. Der er derfor intet, som tyder på, at der er sket en ændring i den grundlæggende teknologi for udvinding eller primær og sekundær smedning. I alle tilfælde er der tale om primær-smedning af jern udført ved den direkte proces, som grundlæggende var den samme fra jernalderen og op til 1700-tallet, blot i ovne af skiftende udformning.

Det er sandsynligt, at jernet kan have stammet fra en lokal produktion, og kombinationen af primær og sekundær smedning i Grytting II peger på, at man i middelalderen stadig var selvforsynende med jern; noget, der da også forekommer sandsynligt på baggrund af den udbredte og velorganiserede jernudvinding i Gudbrandsdalen (Larsen artikel 6 i dette bind). I denne periode bliver det ellers mere og mere udbredt, at der i smedjer ikke forekommer spor af primær-smedning; noget, som sandsynligvis afspejler en vanskelig handel med jern i form af barrer, stænger eller andre former for halvfabrikata (Jouttijärvi 2013). Der blev dog ikke undersøgt slagge fra eventuelle jernudvindingspladser i området, så der kan ikke siges noget mere præcist om sammenhængen mellem udvindingen og primær-smedningen. Analyser baseret på både hoved- og sporeelementer peger dog på, at en lokal produktion er mulig, mens flere fjernere liggende områder kan udelukkes som kilder til jernet (Grandin artikel 22 i dette bind).

Ved Grytting II kan det være hensynet til brandfaren ved primær-smedning, som har medført, at man har valgt at udføre arbejdet ved en esse i det fri, eller der kan være tale om et midlertidigt anlæg med kort levetid.

Da alle de undersøgte jernemner synes at være stumper af råmateriale snarere end færdige genstande, er det ikke muligt, på baggrund af dem, at sige yderligere om anvendelsen af avancerede smedeteknikker som f.eks. kombinationen af jern og stål.

LITTERATUR

